Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
BMJ Health Care Inform ; 30(1)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37364923

RESUMEN

BACKGROUND: The assessment of language and cognition in children at risk of impaired neurodevelopment following neonatal care is a UK standard of care but there is no national, systematic approach for obtaining these data. To overcome these challenges, we developed and evaluated a digital version of a validated parent questionnaire to assess cognitive and language development at age 2 years, the Parent Report of Children's Abilities-Revised (PARCA-R). METHODS: We involved clinicians and parents of babies born very preterm who received care in north-west London neonatal units. We developed a digital version of the PARCA-R questionnaire using standard software. Following informed consent, parents received automated notifications and an invitation to complete the questionnaire on a mobile phone, tablet or computer when their child approached the appropriate age window. Parents could save and print a copy of the results. We evaluated ease of use, parent acceptability, consent for data sharing through integration into a research database and making results available to the clinical team. RESULTS: Clinical staff approached the parents of 41 infants; 38 completed the e-registration form and 30 signed the e-consent. The digital version of the PARCA-R was completed by the parents of 21 of 23 children who reached the appropriate age window. Clinicians and parents found the system easy to use. Only one parent declined permission to integrate data into the National Neonatal Research Database for approved secondary purposes. DISCUSSION: This electronic data collection system and associated automated processes enabled efficient systematic capture of data on language and cognitive development in high-risk children, suitable for national delivery at scale.


Asunto(s)
Tecnología Digital , Desarrollo del Lenguaje , Recién Nacido , Lactante , Humanos , Niño , Preescolar , Estudios de Factibilidad , Electrónica , Cognición
2.
BMJ Health Care Inform ; 30(1)2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36720494

RESUMEN

OBJECTIVES: We involved public and professional stakeholders to assess a novel data interrogation tool, the Neonatal Health Intelligence Tool, for a National Data Asset, the National Neonatal Research Database. METHODS: We recruited parents, preterm adults, data managers, clinicians, network managers and researchers (trialists and epidemiologists) for consultations demonstrating a prototype tool and semi-structured discussion. A thematic analysis of consultations is reported by stakeholder group. RESULTS: We held nine on-line consultations (March-December 2021), with 24 stakeholders: parents (n=8), preterm adults (n=2), data managers (n=3), clinicians (n=3), network managers (n=2), triallists (n=3) and epidemiologists (n=3). We identified four themes from parents/preterm adults: struggling to consume information, Dads and data, bring data to life and yearning for predictions; five themes from data managers/clinicians/network managers: benchmarking, clinical outcomes, transfers and activity, the impact of socioeconomic background and ethnicity, and timeliness of updates and widening availability; and one theme from researchers: interrogating the data. DISCUSSION: Other patient and public involvement (PPI) studies have reported that data tools generate concerns; our stakeholders had none. They were unanimously supportive and enthusiastic, citing visualisation as the tool's greatest strength. Stakeholders had no criticisms; instead, they recognised the tool's potential and wanted more features. Parents saw the tool as an opportunity to inform themselves without burdening clinicians, while clinicians welcomed an aid to explaining potential outcomes to parents. CONCLUSION: All stakeholder groups recognised the need for the tool, praising its content and format. PPI consultations with all key groups, and their synthesis, illustrated desire for additional uses from it.


Asunto(s)
Visualización de Datos , Bases de Datos como Asunto , Recién Nacido , Adulto , Humanos , Personal de Salud , Padres
3.
NPJ Breast Cancer ; 8(1): 125, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446866

RESUMEN

The selective oestrogen receptor (ER) degrader (SERD), fulvestrant, is limited in its use for the treatment of breast cancer (BC) by its poor oral bioavailability. Comparison of the orally bioavailable investigational SERD elacestrant, versus fulvestrant, demonstrates both drugs impact tumour growth of ER+ patient-derived xenograft models harbouring several ESR1 mutations but that elacestrant is active after acquired resistance to fulvestrant. In cell line models of endocrine sensitive and resistant breast cancer both drugs impact the ER-cistrome, ER-interactome and transcription of oestrogen-regulated genes similarly, confirming the anti-oestrogenic activity of elacestrant. The addition of elacestrant to CDK4/6 inhibitors enhances the antiproliferative effect compared to monotherapy. Furthermore, elacestrant inhibits the growth of palbociclib-resistant cells. Lastly, resistance to elacestrant involves Type-I and Type-II receptor tyrosine kinases which are amenable to therapeutic targeting. Our data support the wider clinical testing of elacestrant.

4.
Early Hum Dev ; 171: 105611, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35785689

RESUMEN

In this qualitative study exploring parent views of information about research studies, we found they accepted uncertainty as justification, and that three key aspects of language - words, tone, and pace - influence parents' decision about their baby's inclusion. We recommend parents are routinely involved in developing information materials.


Asunto(s)
Lenguaje , Padres , Humanos , Recién Nacido , Investigación Cualitativa
5.
Nat Commun ; 11(1): 4053, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792481

RESUMEN

A significant proportion of patients with oestrogen receptor (ER) positive breast cancers (BC) develop resistance to endocrine treatments (ET) and relapse with metastatic disease. Here we perform whole exome sequencing and gene expression analysis of matched primary breast tumours and bone metastasis-derived patient-derived xenografts (PDX). Transcriptomic analyses reveal enrichment of the G2/M checkpoint and up-regulation of Polo-like kinase 1 (PLK1) in PDX. PLK1 inhibition results in tumour shrinkage in highly proliferating CCND1-driven PDX, including different RB-positive PDX with acquired palbociclib resistance. Mechanistic studies in endocrine resistant cell lines, suggest an ER-independent function of PLK1 in regulating cell proliferation. Finally, in two independent clinical cohorts of ER positive BC, we find a strong association between high expression of PLK1 and a shorter metastases-free survival and poor response to anastrozole. In conclusion, our findings support clinical development of PLK1 inhibitors in patients with advanced CCND1-driven BC, including patients progressing on palbociclib treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina D1/metabolismo , Secuenciación del Exoma/métodos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Ciclina D1/genética , Variaciones en el Número de Copia de ADN/genética , Resistencia a Antineoplásicos/genética , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Humanos , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Ratones , Ratones Desnudos , Piperazinas/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Pteridinas/uso terapéutico , Piridinas/uso terapéutico , Quinasa Tipo Polo 1
6.
Oncogene ; 39(25): 4781-4797, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32307447

RESUMEN

Combination of CDK4/6 inhibitors and endocrine therapy improves clinical outcome in advanced oestrogen receptor (ER)-positive breast cancer, however relapse is inevitable. Here, we show in model systems that other than loss of RB1 few gene-copy number (CN) alterations are associated with irreversible-resistance to endocrine therapy and subsequent secondary resistance to palbociclib. Resistance to palbociclib occurred as a result of tumour cell re-wiring leading to increased expression of EGFR, MAPK, CDK4, CDK2, CDK7, CCNE1 and CCNE2. Resistance altered the ER genome wide-binding pattern, leading to decreased expression of 'classical' oestrogen-regulated genes and was accompanied by reduced sensitivity to fulvestrant and tamoxifen. Persistent CDK4 blockade decreased phosphorylation of tuberous sclerosis complex 2 (TSC2) enhancing EGFR signalling, leading to the re-wiring of ER. Kinome-knockdown confirmed dependency on ERBB-signalling and G2/M-checkpoint proteins such as WEE1, together with the cell cycle master regulator, CDK7. Noteworthy, sensitivity to CDK7 inhibition was associated with loss of ER and RB1 CN. Overall, we show that resistance to CDK4/6 inhibitors is dependent on kinase re-wiring and the redeployment of signalling cascades previously associated with endocrine resistance and highlights new therapeutic networks that can be exploited upon relapse after CDK4/6 inhibition.


Asunto(s)
Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Receptores de Estrógenos/genética , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Resistencia a Antineoplásicos/genética , Femenino , Fulvestrant/administración & dosificación , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Desnudos , Interferencia de ARN , Receptores de Estrógenos/metabolismo , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Tamoxifeno/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
7.
Breast Cancer Res ; 22(1): 14, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005287

RESUMEN

After publication of the original article [1], we were notified that an author's surname has been erroneously spelled. Elisabetta Maragoni's family name should be replaced with Marangoni.

8.
Breast Cancer Res ; 21(1): 135, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31801615

RESUMEN

BACKGROUND: Endocrine therapies are still the main strategy for the treatment of oestrogen receptor-positive (ER+) breast cancers (BC), but resistance remains problematic. Cross-talk between ER and PI3K/AKT/mTORC has been associated with ligand-independent transcription of ER. We have previously reported the anti-proliferative effects of the combination of everolimus (an mTORC1 inhibitor) with endocrine therapy in resistance models, but potential routes of escape via AKT signalling can lead to resistance; therefore, the use of dual mTORC1/2 inhibitors has met with significant interest. METHODS: To address this, we tested the effect of vistusertib, a dual mTORC1 and mTORC2 inhibitor, in a panel of endocrine-resistant and endocrine-sensitive ER+ BC cell lines, with varying PTEN, PIK3CA and ESR1 mutation status. End-points included proliferation, cell signalling, cell cycle and effect on ER-mediated transcription. Two patient-derived xenografts (PDX) modelling endocrine resistance were used to assess the efficacy of vistusertib, fulvestrant or the combination on tumour progression, and biomarker studies were conducted using immunohistochemistry and RNA-seq technologies. RESULTS: Vistusertib caused a dose-dependent decrease in proliferation of all the cell lines tested and reduced abundance of mTORC1, mTORC2 and cell cycle markers, but caused an increase in abundance of EGFR, IGF1R and ERBB3 in a context-dependent manner. ER-mediated transcription showed minimal effect of vistusertib. Combined therapy of vistusertib with fulvestrant showed synergy in two ER+ PDX models of resistance to endocrine therapy and delayed tumour progression after cessation of therapy. CONCLUSIONS: These data support the notion that models of acquired endocrine resistance may have a different sensitivity to mTOR inhibitor/endocrine therapy combinations.

9.
Br J Cancer ; 120(2): 247-255, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30563991

RESUMEN

BACKGROUND: Several thousand breast cancer patients develop resistance to aromatase inhibitors (AIs) each year in the UK. Rational treatment requires an improved molecular characterisation of resistant disease. MATERIALS AND METHODS: The mutational landscape of 198 regions in 16 key breast cancer genes and RNA expression of 209 genes covering key pathways was evaluated in paired biopsies before AI treatment and at progression on AI from 48 patients. Validity of findings was assessed in another five ESR1-mutated tumours progressing on AI. RESULTS: Eighty-nine mutations were identified in 41 matched pairs (PIK3CA in 27%; CDH1 in 20%). ESR1 (n = 5), ERBB2 (n = 1) and MAP2K4 (n = 1) had mutations in the secondary sample only. There was very high heterogeneity in gene expression between AI-resistant tumours with few patterns apparent. However, in the ESR1-mutated AI-resistant tumours, expression of four classical oestrogen-regulated genes (ERGs) was sevenfold higher than in ESR1 wild-type tumours, a finding confirmed in the second set of ESR1-mutated tumours. In ESR1 wild-type AI-resistant tumours ERG expression remained suppressed and was uncoupled from the recovery seen in proliferation. CONCLUSIONS: Major genotypic and phenotypic heterogeneity exists between AI-resistant disease. ESR1 mutations appear to drive oestrogen-regulated processes in resistant tumours.


Asunto(s)
Inhibidores de la Aromatasa/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/genética , Adulto , Anciano , Anciano de 80 o más Años , Antígenos CD/genética , Inhibidores de la Aromatasa/efectos adversos , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Cadherinas/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Estrógenos/genética , Estrógenos/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MAP Quinasa Quinasa 4/genética , Persona de Mediana Edad , Mutación , Estadificación de Neoplasias , Receptor ErbB-2/genética
10.
Breast Cancer Res ; 22(1): 2, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31892336

RESUMEN

BACKGROUND: Endocrine therapy reduces breast cancer mortality by 40%, but resistance remains a major clinical problem. In this study, we sought to investigate the impact of aromatase inhibitor (AI) therapy on gene expression and identify gene modules representing key biological pathways that relate to early AI therapy resistance. METHODS: Global gene expression was measured on pairs of core-cut biopsies taken at baseline and at surgery from 254 patients with ER-positive primary breast cancer randomised to receive 2-week presurgical AI (n = 198) or no presurgical treatment (control n = 56) from the POETIC trial. Data from the AI group was adjusted to eliminate artefactual process-related changes identified in the control group. The response was assessed by changes in the proliferation marker, Ki67. RESULTS: High baseline ESR1 expression associated with better AI response in HER2+ tumours but not HER2- tumours. In HER2- tumours, baseline expression of 48 genes associated with poor antiproliferative response (p < 0.005) including PERP and YWHAQ, the two most significant, and the transcription co-regulators (SAP130, HDAC4, and NCOA7) which were among the top 16 most significant. Baseline gene signature scores measuring cell proliferation, growth factor signalling (ERBB2-GS, RET/GDNF-GS, and IGF-1-GS), and immune activity (STAT1-GS) were significantly higher in poor AI responders. Two weeks of AI caused downregulation of genes involved in cell proliferation and ER signalling, as expected. Signature scores of E2F activation and TP53 dysfunction after 2-week AI were associated with poor AI response in both HER2- and HER2+ patients. CONCLUSIONS: There is a high degree of heterogeneity in adaptive mechanisms after as little as 2-week AI therapy; however, all appear to converge on cell cycle regulation. Our data support the evaluation of whether an E2F signatures after short-term exposure to AI may identify those patients most likely to benefit from the early addition of CDK4/6 inhibitors. TRIAL REGISTRATION: ISRCTN, ISRCTN63882543, registered on 18 December 2007.


Asunto(s)
Antineoplásicos Hormonales/uso terapéutico , Inhibidores de la Aromatasa/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Receptores de Estrógenos/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Puntos de Control del Ciclo Celular/genética , Proliferación Celular/genética , Resistencia a Antineoplásicos/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Antígeno Ki-67/metabolismo , Periodo Perioperatorio , Posmenopausia , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/genética , Transducción de Señal/genética
11.
Cancer Discov ; 8(9): 1176-1193, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29991605

RESUMEN

Mutations in estrogen receptor alpha (ERα) that confer resistance to existing classes of endocrine therapies are detected in up to 30% of patients who have relapsed during endocrine treatments. Because a significant proportion of therapy-resistant breast cancer metastases continue to be dependent on ERα signaling, there remains a critical need to develop the next generation of ERα antagonists that can overcome aberrant ERα activity. Through our drug-discovery efforts, we identified H3B-5942, which covalently inactivates both wild-type and mutant ERα by targeting Cys530 and enforcing a unique antagonist conformation. H3B-5942 belongs to a class of ERα antagonists referred to as selective estrogen receptor covalent antagonists (SERCA). In vitro comparisons of H3B-5942 with standard-of-care (SoC) and experimental agents confirmed increased antagonist activity across a panel of ERαWT and ERαMUT cell lines. In vivo, H3B-5942 demonstrated significant single-agent antitumor activity in xenograft models representing ERαWT and ERαY537S breast cancer that was superior to fulvestrant. Lastly, H3B-5942 potency can be further improved in combination with CDK4/6 or mTOR inhibitors in both ERαWT and ERαMUT cell lines and/or tumor models. In summary, H3B-5942 belongs to a class of orally available ERα covalent antagonists with an improved profile over SoCs.Significance: Nearly 30% of endocrine therapy-resistant breast cancer metastases harbor constitutively activating mutations in ERα. SERCA H3B-5942 engages C530 of both ERαWT and ERαMUT, promotes a unique antagonist conformation, and demonstrates improved in vitro and in vivo activity over SoC agents. Importantly, single-agent efficacy can be further enhanced by combining with CDK4/6 or mTOR inhibitors. Cancer Discov; 8(9); 1176-93. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 1047.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Antagonistas del Receptor de Estrógeno/administración & dosificación , Receptor alfa de Estrógeno/antagonistas & inhibidores , Indazoles/administración & dosificación , Mutación , Administración Oral , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisteína/antagonistas & inhibidores , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Antagonistas del Receptor de Estrógeno/química , Antagonistas del Receptor de Estrógeno/farmacología , Receptor alfa de Estrógeno/química , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Indazoles/química , Indazoles/farmacología , Células MCF-7 , Ratones , Conformación Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Br J Cancer ; 119(3): 313-322, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29991699

RESUMEN

BACKGROUND: Resistance to endocrine therapy remains a major clinical problem in the treatment of oestrogen-receptor positive (ER+) breast cancer. Studies show androgen-receptor (AR) remains present in 80-90% of metastatic breast cancers providing support for blockade of AR-signalling. However, clinical studies with abiraterone, which blocks cytochrome P450 17A1 (CYP17A1) showed limited benefit. METHODS: In order to address this, we assessed the impact of abiraterone on cell-viability, cell-death, ER-mediated transactivation and recruitment to target promoters. together with ligand-binding assays in a panel of ER+ breast cancer cell lines that were either oestrogen-dependent, modelling endocrine-sensitive disease, or oestrogen-independent modelling relapse on an aromatase inhibitor. The latter, harboured wild-type (wt) or naturally occurring ESR1 mutations. RESULTS: Similar to oestrogen, abiraterone showed paradoxical impact on proliferation by stimulating cell growth or death, depending on whether the cells are hormone-dependent or have undergone prolonged oestrogen-deprivation, respectively. Abiraterone increased ER-turnover, induced ER-mediated transactivation and ER-degradation via the proteasome. CONCLUSIONS: Our study confirms the oestrogenic activity of abiraterone and highlights its differential impact on cells dependent on oestrogen for their proliferation vs. those that are ligand-independent and harbour wt or mutant ESR1. These properties could impact the clinical efficacy of abiraterone in breast cancer.


Asunto(s)
Androstenos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Receptor alfa de Estrógeno/genética , Neoplasias Hormono-Dependientes/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Inhibidores de la Aromatasa/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Mutación , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Neoplasias Hormono-Dependientes/genética , Neoplasias Hormono-Dependientes/patología , Receptores Androgénicos/genética , Transducción de Señal/efectos de los fármacos , Tamoxifeno/farmacología
13.
Breast Cancer Res ; 20(1): 44, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29880014

RESUMEN

BACKGROUND: Endocrine therapies are the mainstay of treatment for oestrogen receptor (ER)-positive (ER+) breast cancer (BC). However, resistance remains problematic largely due to enhanced cross-talk between ER and growth factor pathways, circumventing the need for steroid hormones. Previously, we reported the anti-proliferative effect of everolimus (RAD001-mTORC1 inhibitor) with endocrine therapy in resistance models; however, potential routes of escape from treatment via ERBB2/3 signalling were observed. We hypothesised that combined targeting of three cellular nodes (ER, ERBB, and mTORC1) may provide enhanced long-term clinical utility. METHODS: A panel of ER+ BC cell lines adapted to long-term oestrogen deprivation (LTED) and expressing ESR1 wt or ESR1 Y537S , modelling acquired resistance to an aromatase-inhibitor (AI), were treated in vitro with a combination of RAD001 and neratinib (pan-ERBB inhibitor) in the presence or absence of oestradiol (E2), tamoxifen (4-OHT), or fulvestrant (ICI182780). End points included proliferation, cell signalling, cell cycle, and effect on ER-mediated transactivation. An in-vivo model of AI resistance was treated with monotherapies and combinations to assess the efficacy in delaying tumour progression. RNA-seq analysis was performed to identify changes in global gene expression as a result of the indicated therapies. RESULTS: Here, we show RAD001 and neratinib (pan-ERBB inhibitor) caused a concentration-dependent decrease in proliferation, irrespective of the ESR1 mutation status. The combination of either agent with endocrine therapy further reduced proliferation but the maximum effect was observed with a triple combination of RAD001, neratinib, and endocrine therapy. In the absence of oestrogen, RAD001 caused a reduction in ER-mediated transcription in the majority of the cell lines, which associated with a decrease in recruitment of ER to an oestrogen-response element on the TFF1 promoter. Contrastingly, neratinib increased both ER-mediated transactivation and ER recruitment, an effect reduced by the addition of RAD001. In-vivo analysis of an LTED model showed the triple combination of RAD001, neratinib, and fulvestrant was most effective at reducing tumour volume. Gene set enrichment analysis revealed that the addition of neratinib negated the epidermal growth factor (EGF)/EGF receptor feedback loops associated with RAD001. CONCLUSIONS: Our data support the combination of therapies targeting ERBB2/3 and mTORC1 signalling, together with fulvestrant, in patients who relapse on endocrine therapy and retain a functional ER.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Receptor alfa de Estrógeno/genética , Neoplasias Hormono-Dependientes/tratamiento farmacológico , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Inhibidores de la Aromatasa/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/antagonistas & inhibidores , Factor de Crecimiento Epidérmico/genética , Estradiol/farmacología , Estrógenos/metabolismo , Everolimus/farmacología , Femenino , Fulvestrant/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Neoplasias Hormono-Dependientes/genética , Neoplasias Hormono-Dependientes/patología , Quinolinas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-3/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Tamoxifeno/farmacología
14.
JNCI Cancer Spectr ; 2(2): pky005, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31360844

RESUMEN

To investigate the impact of sampling methodology on gene expression data from primary estrogen receptor-positive (ER+) breast cancer biopsies, global gene expression was measured in core-cut biopsies at baseline and surgery from patients randomly assigned to receive either two weeks of presurgical aromatase inhibitor (AI; n = 157) or no presurgical treatment (n = 56). Those genes most markedly altered in the AI group (eg, FOS, DUSP1, RGS1, FOSB) were similarly altered in the no treatment group; some widely investigated genes that were apparently unaffected in the AI group (eg, MYC) were counter-altered in the control group, masking actual AI-dependent changes. In the absence of a control group, these artefactual changes would likely lead to the most affected genes being the erroneous focus of research. The findings are likely relevant to all archival collections of ER+ breast cancer.

15.
Nat Commun ; 8(1): 1865, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192207

RESUMEN

Resistance to endocrine therapy remains a major clinical problem in breast cancer. Genetic studies highlight the potential role of estrogen receptor-α (ESR1) mutations, which show increased prevalence in the metastatic, endocrine-resistant setting. No naturally occurring ESR1 mutations have been reported in in vitro models of BC either before or after the acquisition of endocrine resistance making functional consequences difficult to study. We report the first discovery of naturally occurring ESR1 Y537C and ESR1 Y537S mutations in MCF7 and SUM44 ESR1-positive cell lines after acquisition of resistance to long-term-estrogen-deprivation (LTED) and subsequent resistance to fulvestrant (ICIR). Mutations were enriched with time, impacted on ESR1 binding to the genome and altered the ESR1 interactome. The results highlight the importance and functional consequence of these mutations and provide an important resource for studying endocrine resistance.


Asunto(s)
Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/genética , Estradiol/análogos & derivados , Antagonistas del Receptor de Estrógeno/uso terapéutico , Receptor alfa de Estrógeno/genética , Línea Celular Tumoral , Estradiol/uso terapéutico , Femenino , Fulvestrant , Humanos , Células MCF-7 , Mutación , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico , Tamoxifeno/uso terapéutico
16.
Breast Cancer Res ; 18(1): 58, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27246191

RESUMEN

BACKGROUND: Therapies targeting estrogenic stimulation in estrogen receptor-positive (ER+) breast cancer (BC) reduce mortality, but resistance remains a major clinical problem. Molecular studies have shown few high-frequency mutations to be associated with endocrine resistance. In contrast, expression profiling of primary ER+ BC samples has identified several promising signatures/networks for targeting. METHODS: To identify common adaptive mechanisms associated with resistance to aromatase inhibitors (AIs), we assessed changes in global gene expression during adaptation to long-term estrogen deprivation (LTED) in a panel of ER+ BC cell lines cultured in 2D on plastic (MCF7, T47D, HCC1428, SUM44 and ZR75.1) or in 3D on collagen (MCF7) to model the stromal compartment. Furthermore, dimethyl labelling followed by LC-MS/MS was used to assess global changes in protein abundance. The role of target genes/proteins on proliferation, ER-mediated transcription and recruitment of ER to target gene promoters was analysed. RESULTS: The cholesterol biosynthesis pathway was the common upregulated pathway in the ER+ LTED but not the ER- LTED cell lines, suggesting a potential mechanism dependent on continued ER expression. Targeting the individual genes of the cholesterol biosynthesis pathway with siRNAs caused a 30-50 % drop in proliferation. Further analysis showed increased expression of 25-hydroxycholesterol (HC) in the MCF7 LTED cells. Exogenous 25-HC or 27-HC increased ER-mediated transcription and expression of the endogenous estrogen-regulated gene TFF1 in ER+ LTED cells but not in the ER- LTED cells. Additionally, recruitment of the ER and CREB-binding protein (CBP) to the TFF1 and GREB1 promoters was increased upon treatment with 25-HC and 27-HC. In-silico analysis of two independent studies of primary ER+ BC patients treated with neoadjuvant AIs showed that increased expression of MSMO1, EBP, LBR and SQLE enzymes, required for cholesterol synthesis and increased in our in-vitro models, was significantly associated with poor response to endocrine therapy. CONCLUSION: Taken together, these data provide support for the role of cholesterol biosynthesis enzymes and the cholesterol metabolites, 25-HC and 27-HC, in a novel mechanism of resistance to endocrine therapy in ER+ BC that has potential as a therapeutic target.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Vías Biosintéticas , Neoplasias de la Mama/metabolismo , Colesterol/biosíntesis , Resistencia a Antineoplásicos , Estrógenos/metabolismo , Receptores de Estrógenos/metabolismo , Antineoplásicos Hormonales/uso terapéutico , Biomarcadores , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ésteres del Colesterol/metabolismo , Resistencia a Antineoplásicos/genética , Femenino , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Fenotipo , Pronóstico , Proteoma , Proteómica/métodos , Interferencia de ARN , Transcriptoma , Resultado del Tratamiento
17.
PLoS One ; 11(6): e0157397, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27308830

RESUMEN

Despite the effectiveness of endocrine therapies in estrogen receptor positive (ER+) breast cancer, approximately 40% of patients relapse. Previously, we identified the Focal-adhesion kinase canonical pathway as a major contributor of resistance to estrogen deprivation and cellular-sarcoma kinase (c-src) as a dominant gene in this pathway. Dasatinib, a pan-src inhibitor, has recently been used in clinical trials to treat ER+ patients but has shown mixed success. In the following study, using isogenic cell line models, we provide a potential explanation for these findings and suggest a sub-group that may benefit. A panel of isogenic cell lines modelling resistance to aromatase inhibitors (LTED) and tamoxifen (TAMR) were assessed for response to dasatinib ± endocrine therapy. Dasatinib caused a dose-dependent decrease in proliferation in MCF7-TAMR cells and resensitized them to tamoxifen and fulvestrant but not in HCC1428-TAMR. In contrast, in estrogen-deprived conditions, dasatinib increased the proliferation rate of parental-MCF7 cells and had no effect on MCF7-LTED or HCC1428-LTED. Treatment with dasatinib caused a decrease in src-phosphorylation and inhibition of downstream pathways, including AKT and ERK1/2 in all cell lines tested, but only the MCF7-TAMR showed a concomitant decrease in markers of cell cycle progression. Inhibition of src also caused a significant decrease in cell migration in both MCF7-LTED and MCF7-TAMR cells. Finally, we showed that, in MCF7-TAMR cells, in contrast to tamoxifen sensitive cell lines, ER is expressed throughout the cell rather than being restricted to the nucleus and that treatment with dasatinib resulted in nuclear shuttling of ER, which was associated with an increase in ER-mediated transcription. These data suggest that src has differential effects in endocrine-resistant cell lines, particularly in tamoxifen resistant models, with low ER genomic activity, providing further evidence of the importance of patient selection for clinical trials testing dasatinib utility in ER+ breast cancer.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Dasatinib/farmacología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Receptores de Estrógenos/genética , Familia-src Quinasas/antagonistas & inhibidores , Proteína Tirosina Quinasa CSK , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estradiol/análogos & derivados , Estradiol/farmacología , Femenino , Fulvestrant , Humanos , Células MCF-7 , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Estrógenos/metabolismo , Transducción de Señal , Tamoxifeno/farmacología , Activación Transcripcional , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
18.
Cancer Res ; 76(6): 1615-26, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26795347

RESUMEN

Aromatase inhibitors (AI) have become the first-line endocrine treatment of choice for postmenopausal estrogen receptor-positive (ER(+)) breast cancer patients, but resistance remains a major challenge. Metabolic reprogramming is a hallmark of cancer and may contribute to drug resistance. Here, we investigated the link between altered breast cancer metabolism and AI resistance using AI-resistant and sensitive breast cancer cells, patient tumor samples, and AI-sensitive human xenografts. We found that long-term estrogen deprivation (LTED), a model of AI resistance, was associated with increased glycolysis dependency. Targeting the glycolysis-priming enzyme hexokinase-2 (HK2) in combination with the AI, letrozole, synergistically reduced cell viability in AI-sensitive models. Conversely, MCF7-LTED cells, which displayed a high degree of metabolic plasticity, switched to oxidative phosphorylation when glycolysis was impaired. This effect was ER dependent as breast cancer cells with undetectable levels of ER failed to exhibit metabolic plasticity. MCF7-LTED cells were also more motile than their parental counterparts and assumed amoeboid-like invasive abilities upon glycolysis inhibition with 2-deoxyglucose (2-DG). Mechanistic investigations further revealed an important role for miR-155 in metabolic reprogramming. Suppression of miR-155 resulted in sensitization of MCF7-LTED cells to metformin treatment and impairment of 2-DG-induced motility. Notably, high baseline miR-155 expression correlated with poor response to AI therapy in a cohort of ER(+) breast cancers treated with neoadjuvant anastrozole. These findings suggest that miR-155 represents a biomarker potentially capable of identifying the subset of breast cancers most likely to adapt to and relapse on AI therapy.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Neoplasias de la Mama/genética , Estrógenos/genética , MicroARNs/genética , Receptores de Estrógenos/genética , Anastrozol , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Glucólisis/efectos de los fármacos , Glucólisis/genética , Hexoquinasa/genética , Humanos , Letrozol , Células MCF-7 , Ratones , Ratones Desnudos , Terapia Neoadyuvante/métodos , Nitrilos/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Triazoles/farmacología
19.
Sci Transl Med ; 7(313): 313ra182, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26560360

RESUMEN

Acquired ESR1 mutations are a major mechanism of resistance to aromatase inhibitors (AIs). We developed ultra high-sensitivity multiplex digital polymerase chain reaction assays for ESR1 mutations in circulating tumor DNA (ctDNA) and investigated the clinical relevance and origin of ESR1 mutations in 171 women with advanced breast cancer. ESR1 mutation status in ctDNA showed high concordance with contemporaneous tumor biopsies and was accurately assessed in samples shipped at room temperature in preservative tubes. ESR1 mutations were found exclusively in estrogen receptor-positive breast cancer patients previously exposed to AI. Patients with ESR1 mutations had a substantially shorter progression-free survival on subsequent AI-based therapy [hazard ratio, 3.1; 95% confidence interval (CI), 1.9 to 23.1; P = 0.0041]. ESR1 mutation prevalence differed markedly between patients who were first exposed to AI during the adjuvant and metastatic settings [5.8% (3 of 52) versus 36.4% (16 of 44), respectively; P = 0.0002]. In an independent cohort, ESR1 mutations were identified in 0% (0 of 32; 95% CI, 0 to 10.9) tumor biopsies taken after progression on adjuvant AI. In a patient with serial sampling, ESR1 mutation was selected during metastatic AI therapy to become the dominant clone in the cancer. ESR1 mutations can be robustly identified with ctDNA analysis and predict for resistance to subsequent AI therapy. ESR1 mutations are rarely acquired during adjuvant AI but are commonly selected by therapy for metastatic disease, providing evidence that mechanisms of resistance to targeted therapy may be substantially different between the treatment of micrometastatic and overt metastatic cancer.


Asunto(s)
Antineoplásicos/administración & dosificación , Inhibidores de la Aromatasa/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Reacción en Cadena de la Polimerasa Multiplex
20.
Mol Cancer Ther ; 14(9): 2035-48, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26116361

RESUMEN

PI3K/AKT/mTOR signaling plays an important role in breast cancer. Its interaction with estrogen receptor (ER) signaling becomes more complex and interdependent with acquired endocrine resistance. Targeting mTOR combined with endocrine therapy has shown clinical utility; however, a negative feedback loop exists downstream of PI3K/AKT/mTOR. Direct blockade of AKT together with endocrine therapy may improve breast cancer treatment. AZD5363, a novel pan-AKT kinase catalytic inhibitor, was examined in a panel of ER(+) breast cancer cell lines (MCF7, HCC1428, T47D, ZR75.1) adapted to long-term estrogen deprivation (LTED) or tamoxifen (TamR). AZD5363 caused a dose-dependent decrease in proliferation in all cell lines tested (GI50 < 500 nmol/L) except HCC1428 and HCC1428-LTED. T47D-LTED and ZR75-LTED were the most sensitive of the lines (GI50 ∼ 100 nmol/L). AZD5363 resensitized TamR cells to tamoxifen and acted synergistically with fulvestrant. AZD5363 decreased p-AKT/mTOR targets leading to a reduction in ERα-mediated transcription in a context-specific manner and concomitant decrease in recruitment of ER and CREB-binding protein (CBP) to estrogen response elements located on the TFF1, PGR, and GREB1 promoters. Furthermore, AZD5363 reduced expression of cell-cycle-regulatory proteins. Global gene expression highlighted ERBB2-ERBB3, ERK5, and IGFI signaling pathways driven by MYC as potential feedback-loops. Combined treatment with AZD5363 and fulvestrant showed synergy in an ER(+) patient-derived xenograft and delayed tumor progression after cessation of therapy. These data support the combination of AZD5363 with fulvestrant as a potential therapy for breast cancer that is sensitive or resistant to E-deprivation or tamoxifen and that activated AKT is a determinant of response, supporting the need for clinical evaluation.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Resistencia a Antineoplásicos , Estradiol/análogos & derivados , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Pirimidinas/farmacología , Pirroles/farmacología , Receptores de Estrógenos/metabolismo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Análisis por Conglomerados , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Estradiol/farmacología , Femenino , Fulvestrant , Perfilación de la Expresión Génica , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Activación Transcripcional , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...